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We study fifteen months of human mobility data for one and a half million individuals and find that human
mobility traces are highly unique. In fact, in a dataset where the location of an individual is specified hourly,
and with a spatial resolution equal to that given by the carrier’s antennas, four spatio-temporal points are
enough to uniquely identify 95% of the individuals. We coarsen the data spatially and temporally to find a
formula for the uniqueness of human mobility traces given their resolution and the available outside
information. This formula shows that the uniqueness of mobility traces decays approximately as the 1/10
power of their resolution. Hence, even coarse datasets provide little anonymity. These findings represent
fundamental constraints to an individual’s privacy and have important implications for the design of
frameworks and institutions dedicated to protect the privacy of individuals.

D
erived from the Latin Privatus, meaning ‘‘withdraw from public life,’’ the notion of privacy has been
foundational to the development of our diverse societies, forming the basis for individuals’ rights such as
free speech and religious freedom1. Despite its importance, privacy has mainly relied on informal pro-

tection mechanisms. For instance, tracking individuals’ movements has been historically difficult, making them
de-facto private. For centuries, information technologies have challenged these informal protection mechanisms.
In 1086, William I of England commissioned the creation of the Doomsday book, a written record of major
property holdings in England containing individual information collected for tax and draft purposes2. In the late
19th century, de-facto privacy was similarly threatened by photographs and yellow journalism. This resulted in
one of the first publications advocating privacy in the U.S. in which Samuel Warren and Louis Brandeis argued
that privacy law must evolve in response to technological changes3.

Modern information technologies such as the Internet and mobile phones, however, magnify the uniqueness of
individuals, further enhancing the traditional challenges to privacy. Mobility data is among the most sensitive
data currently being collected. Mobility data contains the approximate whereabouts of individuals and can be
used to reconstruct individuals’ movements across space and time. Individual mobility traces T [Fig. 1A–B] have
been used in the past for research purposes4–18 and to provide personalized services to users19. A list of potentially
sensitive professional and personal information that could be inferred about an individual knowing only his
mobility trace was published recently by the Electronic Frontier Foundation20. These include the movements of a
competitor sales force, attendance of a particular church or an individual’s presence in a motel or at an abortion
clinic.

While in the past, mobility traces were only available to mobile phone carriers, the advent of smartphones and
other means of data collection has made these broadly available. For example, AppleH recently updated its privacy
policy to allow sharing the spatio-temporal location of their users with ‘‘partners and licensees’’21. 65.5B geo-
tagged payments are made per year in the US22 while Skyhook wireless is resolving 400 M user’s WiFi location
every day23. Furthermore, it is estimated that a third of the 25B copies of applications available on Apple’s App
StoreSM access a user’s geographic location24,25, and that the geo-location of ,50% of all iOS and Android traffic is
available to ad networks26. All these are fuelling the ubiquity of simply anonymized mobility datasets and are
giving room to privacy concerns.

A simply anonymized dataset does not contain name, home address, phone number or other obvious identifier.
Yet, if individual’s patterns are unique enough, outside information can be used to link the data back to an
individual. For instance, in one study, a medical database was successfully combined with a voters list to extract
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the health record of the governor of Massachusetts27. In another,
mobile phone data have been re-identified using users’ top loca-
tions28. Finally, part of the Netflix challenge dataset was re-identified
using outside information from The Internet Movie Database29.

All together, the ubiquity of mobility datasets, the uniqueness of
human traces, and the information that can be inferred from them
highlight the importance of understanding the privacy bounds of
human mobility. We show that the uniqueness of human mobility
traces is high and that mobility datasets are likely to be re-identifiable
using information only on a few outside locations. Finally, we show
that one formula determines the uniqueness of mobility traces pro-
viding mathematical bounds to the privacy of mobility data. The
uniqueness of traces is found to decrease according to a power func-
tion with an exponent that scales linearly with the number of known
spatio-temporal points. This implies that even coarse datasets pro-
vide little anonymity.

Results
Uniqueness of human mobility. In 1930, Edmond Locard showed
that 12 points are needed to uniquely identify a fingerprint30. Our
unicity test estimates the number of points p needed to uniquely
identify the mobility trace of an individual. The fewer points
needed, the more unique the traces are and the easier they would
be to re-identify using outside information. For re-identification
purposes, outside observations could come from any publicly
available information, such as an individual’s home address,
workplace address, or geo-localized tweets or pictures. To the best
of our knowledge, this is the first quantification of the uniqueness of
human mobility traces with random points in a sparse, simply
anonymized mobility dataset of the scale of a small country.

Given Ip, a set of spatio-temporal points, and D, a simply anon-
ymized mobility dataset, we evaluate e, the uniqueness of traces, by
extracting from D the subset of trajectories S(Ip) that match the p
points composing Ip [See Methods]. A trace is unique if jS(Ip)j 5 1,
containing only one trace. For example, in Fig. 2A, we evaluate the
uniqueness of traces given Ip52. The two spatio-temporal points
contained in Ip52 are zone I from 9am to 10am and zone II from
12pm to 1pm. The red and the green traces both satisfy Ip52, making
them not unique. However, we can also evaluate the uniqueness of
traces knowing Ip53, adding as a third point zone III between 3pm
and 4pm. In this case jS(Ip53)j 5 1, uniquely characterize the green
trace. A lower bound on the risk of deductive disclosure of a user’s
identity is given by the uniqueness of his mobility trace, the like-
lihood of this brute force characterization to succeed.

Our dataset contains 15 months of mobility data for 1.5 M people,
a significant and representative part of the population of a small
European country, and roughly the same number of users as the

location-based service FoursquareH31. Just as with smartphone appli-
cations or electronic payments, the mobile phone operator records
the interactions of the user with his phone. This creates a comparable
longitudinally sparse and discrete database [Fig. 3]. On average, 114
interactions per user per month for the nearly 6500 antennas are
recorded. Antennas in our database are distributed throughout the
country and serve, on average, , 2000 inhabitants each, covering
areas ranging from 0.15 km2 in cities to 15 km2 in rural areas. The
number of antennas is strongly correlated with population density
(R2 5 .6426) [Fig. 3C]. The same is expected from businesses, places
in location-based social networks, or WiFi hotspots.

Fig. 2B shows the fraction of unique traces (e) as a function of the
number of available points p. Four randomly chosen points are
enough to uniquely characterize 95% of the users (e . .95), whereas
two randomly chosen points still uniquely characterize more than
50% of the users (e . .5). This shows that mobility traces are highly
unique, and can therefore be re-identified using little outside
information.

Scaling properties. Nonetheless, e depends on the spatial and
temporal resolution of the dataset. Here, we determine this depen-
dence by lowering the resolution of our dataset through spatial and
temporal aggregation [Fig. 1C]. We do this by increasing the size of a
region, aggregating neighbouring cells into clusters of v cells, or by
reducing the dataset’s temporal resolution, increasing the length of
the observation time window to h hours [see Methods]. Both of these
aggregations are bound to decrease e, and therefore, make re-
identification harder.

Fig. 4A shows how the uniqueness of mobility traces e depends on
the spatial and temporal resolution of the data. This reduction, how-
ever, is quite gradual. Given four points (p54), we find that e . .5
when using a resolution of h 5 5 hours and v 5 5 antennas.

Statistically, we find that traces are more unique when coarse on
one dimension and fine along another than when they are medium-
grained along both dimensions. Indeed, given four points, e . .6 in a
dataset with a temporal resolution of h 5 15 hours or a spatial
resolution of v 5 15 antennas while e . .4 in a dataset with a
temporal resolution of h 5 7 hours and a spatial resolution of v 5

7 antennas [Fig. 4A].
Next, we show that it is possible to find one formula to estimate the

uniqueness of traces given both, the spatial and temporal resolution
of the data, and the number of points available to an outside observer.
Fig. 4B and 4C show that the uniqueness of a trace decreases as the
power function e 5 a 2 xb, for decreases in both the spatial and
temporal resolution (x), and for all considered p 5 4, 6, 8 and 10 (see
Table S1). The uniqueness of human mobility can thus be expressed
using the single formula: e 5 a 2 (nh)b. We find that this power
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Figure 1 | (A) Trace of an anonymized mobile phone user during a day. The dots represent the times and locations where the user made or received a call.

Every time the user has such an interaction, the closest antenna that routes the call is recorded. (B) The same user’s trace as recorded in a mobility database.

The Voronoi lattice, represented by the grey lines, are an approximation of the antennas reception areas, the most precise location information available to

us. The user’s interaction times are here recorded with a precision of one hour. (C) The same individual’s trace when we lower the resolution of our dataset

through spatial and temporal aggregation. Antennas are aggregated in clusters of size two and their associated regions are merged. The user’s interaction

are recorded with a precision of two hours. Such spatial and temporal aggregation render the 8:32 am and 9:15 am interactions indistinguishable.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1376 | DOI: 10.1038/srep01376 2



function fits the data better than other two-parameters functions
such as a 2 exp (lx), a stretched exponential a 2 exp xb, or a
standard linear function a 2 bx (see Table S1). Both estimators for
a and b are highly significant (p , 0.001)32, and the mean pseudo-R2

is 0.98 for the Ip54 case and the Ip510 case. The fit is good at all levels
of spatial and temporal aggregation [Fig. S3A–B].

The power-law dependency of e means that, on average, each time
the spatial or temporal resolution of the traces is divided by two, their
uniqueness decreases by a constant factor , (2)2b. This implies that
privacy is increasingly hard to gain by lowering the resolution of a
dataset.

Fig. 2B shows that, as expected, e increases with p. The mitigating
effect of p on e is mediated by the exponent b which decays linearly
with p: b 5 0.157 2 0.007p [Fig. 4E]. The dependence of b on p
implies that a few additional points might be all that is needed to
identify an individual in a dataset with a lower resolution. In fact,
given four points, a two-fold decrease in spatial or temporal resolu-
tion makes it 9.3% less likely to identify an individual, while given ten
points, the same two-fold decrease results in a reduction of only 6.2%
(see Table S1).

Because of the functional dependency of e on p through the expo-
nent b, mobility datasets are likely to be re-identifiable using
information on only a few outside locations.

Discussion
Our ability to generalize these results to other mobility datasets
depends on the sensitivity of our analysis to extensions of the data

to larger populations, or geographies. An increase in population
density will tend to decrease e. Yet, it will also be accompanied by
an increase in the number of antennas, businesses or WiFi hotspots
used for localizations. These effects run opposite to each other, and
therefore, suggest that our results should generalize to higher popu-
lation densities.

Extensions of the geographical range of observation are also
unlikely to affect the results as human mobility is known to be highly
circumscribed. In fact, 94% of the individuals move within an average
radius of less than 100 km17. This implies that geographical exten-
sions of the dataset will stay locally equivalent to our observations,
making the results robust to changes in geographical range.

From an inference perspective, it is worth noticing that the spatio-
temporal points do not equally increase the likelihood of uniquely
identifying a trace. Furthermore, the information added by a point is
highly dependent from the points already known. The amount of
information gained by knowing one more point can be defined as the
reduction of the cardinality of S(Ip) associated with this extra point.
The larger the decrease, the more useful the piece of information is.
Intuitively, a point on the MIT campus at 3AM is more likely to
make a trace unique than a point in downtown Boston on a Friday
evening.

This study is likely to underestimate e, and therefore the ease of re-
identification, as the spatio-temporal points are drawn at random
from users’ mobility traces. Our Ip are thus subject to the user’s
spatial and temporal distributions. Spatially, it has been shown that
the uncertainty of a typical user’s whereabouts measured by its

Figure 2 | (A) Ip52 means that the information available to the attacker consist of two 7am-8am spatio-temporal points (I and II). In this case, the target

was in zone I between 9am to 10am and in zone II between 12pm to 1pm. In this example, the traces of two anonymized users (red and green) are

compatible with the constraints defined by Ip52. The subset S(Ip52) contains more than one trace and is therefore not unique. However, the green trace

would be uniquely characterized if a third point, zone III between 3pm and 4pm, is added (Ip53). (B) The uniqueness of traces with respect to the number

p of given spatio-temporal points (Ip). The green bars represent the fraction of unique traces, i.e. | S(Ip) | 5 1. The blue bars represent the fraction of | S(Ip) |
# 2. Therefore knowing as few as four spatio-temporal points taken at random (Ip54) is enough to uniquely characterize 95% of the traces amongst 1.5 M

users. (C) Box-plot of the minimum number of spatio-temporal points needed to uniquely characterize every trace on the non-aggregated database. At

most eleven points are enough to uniquely characterize all considered traces.
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Figure 3 | (A) Probability density function of the amount of recorded spatio-temporal points per user during a month. (B) Probability density function

of the median inter-interaction time with the service. (C) The number of antennas per region is correlated with its population (R2 5 .6426). These plots

strongly emphasize the discrete character of our dataset and its similarities with datasets such as the one collected by smartphone apps.
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entropy is 1.74, less than two locations18. This makes our random
choices of points likely to pick the user’s top locations (typically
‘‘home’’ and ‘‘office’’). Temporally, the distribution of calls during
the week is far from uniform [Fig. S1] which makes our random
choice more likely to pick a point at 4PM than at 3AM. However,
even in this case, the traces we considered that are most difficult to
identify can be uniquely identified knowing only 11 locations [Fig. 2C].

For the purpose of re-identification, more sophisticated
approaches could collect points that are more likely to reduce the
uncertainty, exploit irregularities in an individual’s behaviour, or
implicitly take into account information such as home and work-
place or travels abroad29,33. Such approaches are likely to reduce the
number of locations required to identify an individual, vis-à-vis the
average uniqueness of traces.

We showed that the uniqueness of human mobility traces is high,
thereby emphasizing the importance of the idiosyncrasy of human
movements for individual privacy. Indeed, this uniqueness means
that little outside information is needed to re-identify the trace of a
targeted individual even in a sparse, large-scale, and coarse mobility
dataset. Given the amount of information that can be inferred from
mobility data, as well as the potentially large number of simply
anonymized mobility datasets available, this is a growing concern.
We further showed that while E* vhð Þb, b , 2p/100. Together,
these determine the uniqueness of human mobility traces given the
traces’ resolution and the available outside information. These results
should inform future thinking in the collection, use, and protection
of mobility data. Going forward, the importance of location data will
only increase34 and knowing the bounds of individual’s privacy will
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Figure 4 | Uniqueness of traces [e] when we lower the resolution of the dataset with (A) p 5 4 and (D) p 5 10 points. It is easier to attack a dataset that is

coarse on one dimension and fine along another than a medium-grained dataset along both dimensions. Given four spatio-temporal points, more than

60% of the traces are uniquely characterized in a dataset with an h 5 15-hours temporal resolution while less than 40% of the traces are uniquely

characterized in a dataset with a temporal resolution of h 5 7 hours and with clusters of v 5 7 antennas. The region covered by an antenna ranges from

0.15 km2 in urban areas to 15 km2 in rural areas. (B–C) When lowering the temporal or the spatial resolution of the dataset, the uniqueness of traces

decrease as a power function e 5 a 2 xb. (E) While e decreases according to a power function, its exponent b decreases linearly with the number of points

p. Accordingly, a few additional points might be all that is needed to identify an individual in a dataset with a lower resolution.
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be crucial in the design of both future policies and information
technologies.

Methods
The dataset. This work was performed using an anonymized mobile phone dataset
that contains call information for ,1.5 M users of a mobile phone operator.
The data collection took place from April 2006 to June 2007 in a western country.
Each time a user interacts with the mobile phone operator network by initiating or
receiving a call or a text message, the location of the connecting antenna is recorded
[Fig. 1A]. The dataset’s intrinsic spatial resolution is thus the maximal half-distance
between antennas. The dataset’s intrinsic temporal resolution is one hour [Fig. 1B].

Unicity test and the likelihood of deductive disclosure. The considered dataset
contains one trace T for each user. The traces spatio-temporal points contain the
region in which the user was and the time of the interaction. We evaluate the
uniqueness of a trace given a set Ip of p randomly chosen spatio-temporal points. A
trace is said to be to be compatible with Ip if Ip(T [Fig. 2A]. Note that this notion of
compatibility can easily be extended to noisier or richer data. A brute force
characterization is performed by extracting from the entire dataset of 1.5 M users
S(Ip), the set of users whose mobility traces T are compatible with Ip. All mobility
traces in the dataset T are successively tested for compatibility with Ip. A trace is
characterized ‘‘out of x’’, if the set of traces that are compatible with the points
contains at most x users: jS(Ip)j # x. A trace is uniquely characterized if the set
contains exactly one trace: jS(Ip)j 5 1. The uniqueness of traces is estimated as the
percentage of 2500 random traces that are unique given p spatio-temporal points. The
p points composing Ip are taken at random among all the interactions the user had
with the service. As discussed, we do not apply any constraints regarding the choice of
Ip.

Minimum number of spatio-temporal location needed to uniquely characterize
every trace. Fig. 2B shows that .95 , e , 1 given Ip54. Fig. 2C evaluates the minimum
p needed to uniquely characterize every trace in a given set. This set contains a
random sample of 1000 heavy-users, i.e. users that used their phone at least 75 times
per month as their randomly chosen points might make their trace less unique.

Spatial aggregation. Spatial aggregation is achieved by increasing the size of the
regions in which the user is known to be during his interactions with the service. In the
case of discrete data, a bijective relation exists between antennas (known in this case as
centroids) and the region defined by the Voronoi tessellation. The tessellation is
defined so that every point in a region is closer to the region’s antenna than to any
other antenna. In order to increase the region’s area, one should group antennas into
clusters of a given size v. While the problem of optimally grouping places in a 2D space
into groups of given sizes v is non trivial, it can be approximated through clustering
methods. The canonical clustering methods focus on minimizing the within-cluster
sum of squares rather than producing balanced clusters. This drawback can be
controlled by the use of a Frequency Sensitive Competitive Learning scheme35. Fig. S2
shows the resulting group size histogram optimized for clusters of size 4. Once
antennas are aggregated into groups, their associated regions are merged.
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Belgique’’ on Information Retrieval in Time Evolving Networks.

Author contributions
Y.-A. de M. designed and performed experiments, analyzed data and wrote the paper;
C.A.H. designed experiments, developed analytic tools and wrote the paper; M.V. and
V.D.B. designed experiments and wrote the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M. & Blondel, V.D.
Unique in the Crowd: The privacy bounds of human mobility. Sci. Rep. 3, 1376;
DOI:10.1038/srep01376 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1376 | DOI: 10.1038/srep01376 5

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Unique in the Crowd: The privacy bounds of human mobility
	Introduction
	Results
	Uniqueness of human mobility
	Scaling properties

	Discussion
	Methods
	The dataset
	Unicity test and the likelihood of deductive disclosure
	Minimum number of spatio-temporal location needed to uniquely characterize every trace
	Spatial aggregation

	Acknowledgements
	References


