

Protecting Tables by
Means of Cell
Suppression

In collaboration with Partner

Ton de Waal and
Wieger Coutinho

February 2019

CBS | Discussion Paper | February 2019 2

Content

1. Introduction 4

2. Cell suppression 6
2.1 Prior/posterior rule 6
2.2 The traditional criterion for the auditign problem 8
2.3 Why do we need an alternative criterion for the auditing problem? 9
2.4 The alternative criterion for the auditing problem by Daalmans and De Waal

(2010) 11

3. A Linear Programming Formulation for the Auditing Problem 14

4. Finding Secondary Cell Suppressions 17

5. Test results 22
5.1 The auditing problem 22
5.2 Finding cell suppressions 23

6. Discussion 24

References 26

CBS | Discussion Paper | February 2019 3

Summary
National Statistical Institutes (NSIs) have the obligation to protect the privacy of

individual persons or enterprises against disclosure of potentially sensitive

information. For this reason, NSIs protect tabular data against disclosure of

sensitive information before they are released. For tabular magnitude data, the

starting point of this protection process usually is a sensitivity measure for

individual cells. Such a sensitive measure defines when a cell value if considered

safe for publication or not. An often used method to protect a table with unsafe

cells against disclosure of sensitive information is cell suppression. Daalmans and

De Waal (2010) have argued that the standard criterion for deciding whether a

table after suppression is safe or not is somewhat inconsistent and have proposed

a new criterion. Daalmans and De Waal (2010) also gave a mixed-integer

programming problem formulation for applying this new criterion. The problem

with that formulation is that it is quite large and very hard to solve for even

moderately sized tables. In the current paper we propose solving a number of

smaller and computationally much easier linear programming problems instead of

solving one large mixed-integer programming problem.

Keywords
Cell Suppression, Mathematical programming problems, Sensitivity measures,

Statistical disclosure control, Tabular magnitude data

CBS | Discussion Paper | February 2019 4

1. Introduction

National Statistical Institutes (NSIs) have the task to provide policy makers,

researchers and the general public with accurate and detailed information on the

current state of society and its development over time. Such information can, for

instance, be published in the form of statistical tables, which is in fact the

traditional and still most important way to publish statistical information. While

NSIs on the one hand have the obligation to provide detailed statistical

information, they also have the obligation to protect the privacy of individual

persons and enterprises against disclosure of potentially sensitive information.

Such disclosure of sensitive information on individual persons or enterprises may

occur when microdata are released, for instance when an attacker manages to link

a data record in the released microdata to the right person or enterprise in the

population. Disclosure of sensitive individual information may also occur when

tabular data are released. A simple example is a table containing the turnover of

enterprises cross-classified by branch of industry and region. If there is only one

enterprise in the population with a certain combination of branch of industry and

region, the turnover of this enterprise can immediately be disclosed from the

published cell value.

For this reason, NSIs protect data against disclosure of sensitive information

before these data are released. This protection process is referred to as statistical

disclosure control (SDC) or statistical disclosure limitation.

Tabular data can be subdivided into frequency tables, where (estimated) counts

are published, and magnitude tables, where (estimated) totals of a variable, e.g.

turnover of enterprises cross-classified by branch of industry and region, are

published. In this paper we focus on SDC for tabular magnitude data.

For tabular magnitude data, the starting point for SDC usually is a sensitivity

measure for individual cells in the table to be protected (see, e.g., Cox, 1980 and

1981). Such a sensitivity measure defines when a cell value is considered safe for

dissemination or not. Safe cell values may in principle be published, whereas

unsafe (or sensitive) cells must be protected. When all cell values in a table are

considered safe, the table itself is considered safe. If one or more cell values are

unsafe, the table is considered unsafe and needs protection.

An often used method to protect an unsafe table against disclosure of sensitive

information is cell suppression. When cell suppression is applied, the values of one

or more cells are replaced by some symbol, e.g. a cross (×). When cell suppression

is applied, the first step is to suppress the values of the unsafe cells. This is called

primary cell suppression. Besides suppression of the sensitive cells, it is usually

also necessary to suppress the values of some safe cells, as otherwise the values of

(some of) the unsafe cells may be re-calculated from the marginal totals and the

values of the non-suppressed cells. This is referred to as secondary suppression.

Secondary cell suppressions are found by solving a problem of the kind: find the

“best” set of secondary suppressions such that the “table with suppressed cells is

safe”. This problem is referred to as the secondary cell suppression problem. It

consists of two important aspects: find the “best” suppressions and determine

whether a table with suppressions is safe. “Best” is defined by means of some

target function. Examples of such target functions are: minimize the total

CBS | Discussion Paper | February 2019 5

suppressed value, minimize the number of suppressed cell values, or minimize the

number of contributions to the suppressed cells. The problem of determining

whether a table after suppression is safe is called the auditing problem. The

auditing problem is a fundamental part of the secondary cell suppression problem.

The secondary cell suppression problem has been described extensively in the

literature, see, for instance, Kelly, Golden and Assad (1992), Duarte De Carvalho,

Dellaert and De Sanches Osório (1994), Cox (1995), Dellaert and Luijten (1999),

Fischetti and Salazar-González (2000), Cox (2001), Duncan et al. (2001), Willenborg

and De Waal (1996 and 2001), Salazar-González (2002) and Hundepool et al.

(2012). Essential in all these descriptions is the same criterion for deciding whether

a table is safe after cell suppression. This criterion is the de facto standard

criterion for determining whether a table with cell suppressions is safe.

Daalmans and De Waal (2010) have argued that this standard criterion for deciding

whether a table after suppression is safe is inconsistent with the sensitivity

measure for individual cells and have proposed an alternative criterion that is

based on applying the sensitivity measure for single cells to aggregations of

suppressed cells. This criterion is an extension of ideas previously described by

Sande (1977, 1978a, 1978b), Cox (2001) and Giessing (2001). Daalmans and De

Waal (2010) also gave a mixed-integer programming problem formulation for

solving the auditing problem, using their criterion. Section 2 of this paper

recapitulates the standard criterion, the arguments given by Daalmans and De

Waal (2010) against it, and the alternative criterion proposed by Daalmans and De

Waal (2010).

The safeness of a table with cell suppressions (or an individual cell) is always

dependent on which criterion ones uses. We hope that in the rest of the paper it is

clear from the context which (kind of) criterion is used to decide whether a table

with cell suppressions (or individual cell) is safe.

The problem with the mixed-integer programming problem formulation for the

auditing problem given by Daalmans and De Waal (2010) is that it is quite large

and hard to solve for even moderately sized tables. In the current paper we

propose solving a number of smaller and computationally much easier linear

programming (LP) problems instead of solving one large mixed-integer

programming problem. The proposed approach based on solving a number of

linear programming problems is discussed in Section 3.

Using the approach for the auditing problem described in Section 3, one can

develop an approach for solving the secondary cell suppression problem, in any

case to suboptimality. A simple example of such an approach is given in Section 4.

This approach is based on combining the new approach for the auditing problem

with the so-called hypercube method (Repsilber 1994 and 2002, Giessing and

Repsilber, 2002). Finally, Section 5 concludes the paper with a brief discussion.

CBS | Discussion Paper | February 2019 6

2. Cell suppression

2.1 Prior/posterior rule

As mentioned in the Introduction, cell suppression consists of two steps: primary

suppression of unsafe cells and secondary suppression of some additional cell

values. Which cells are unsafe is determined by a sensitivity measure. Well-known

classes of sensitivity measures are the prior/posterior rule and the dominance

rule. The prior/posterior rule considers a cell as unsafe if one of the contributions

can be re-calculated to within a certain threshold percentage of its value using the

total cell value and assumed background information. The threshold percentage

and the assumed background information are determined by the parameters of

the prior/posterior rule. The dominance rule considers a cell as unsafe if a

substantial part of its value is due to only a few contributors. The parameters of

the dominance rule determine what is meant by “a substantial part” and “a few

contributors”.

In this paper we will focus on the prior/posterior rule. The prior/posterior rule

uses two parameters 𝑝 and 𝑞 where 𝑝 < 𝑞. It is assumed that, prior to the

publication of the table, everyone can estimate the contribution of each

contributor to the table to within 𝑞 percent. It is also assumed that everyone

knows to which cell a contributor to the table contributes. A cell is considered

unsafe if a non-zero contribution of an individual contributor to that cell can be

estimated by someone else to within 𝑝 percent after publication of the table. The

prior/posterior rule can be formulated in a version that is more easily applicable in

practice. The formulation given below is based on Section 5 in Daalmans and De

Waal (2010) and can be applied to tables with negative contributions. Note that

since we assume that a priori each contribution can be estimated to within 𝑞

percent, it is a priori also known whether this contribution is positive or negative,

assuming that 𝑞 ≤ 100 which is generally the case. In this paper we assume that

𝑞 ≤ 100.

We denote the number of contributors to a table by 𝑅 and the number of

suppressed cell values by 𝑆𝐶. A suppressed cell value is denoted by 𝑥𝑖 (𝑖 =

1, … , 𝑆𝐶) and the contribution of contributor 𝑟 to 𝑥𝑖 by 𝑥𝑖
𝑟 (𝑖 = 1, … , 𝑆𝐶 ; 𝑟 =

1, … , 𝑅). In this paper we assume that each contributor contributes to one cell

only, i.e. there are no holdings contributing to several cells, and hence that 𝑥𝑖
𝑟

equals zero for all but one 𝑖 = 1, … , 𝑆𝐶. We also assume that there are no

collusions of several contributors to a table, trying to disclose sensitive

information of another contributor to the table. We have 𝑥𝑖 = ∑ 𝑥𝑖
𝑟𝑅

𝑖=1 . We use the

notation 𝑥𝑖
[𝑟]

 to denote decreasingly ordered absolute contributions to suppressed

cell 𝑖 (𝑖 = 1, … , 𝑆𝐶), i.e. |𝑥𝑖
[1]

| ≥ |𝑥𝑖
[2]

| ≥ ⋯ ≥ |𝑥𝑖
[𝑅]

| ≥ 0.

Let us suppose that a contributor 𝑠 in a suppressed cell 𝑖 wants to estimate the

contribution 𝑥𝑖
𝑡 of contributor 𝑡 to cell 𝑖. Contributor 𝑠 can derive an upper bound

for 𝑥𝑖
𝑡 by subtracting his own contribution 𝑥𝑖

𝑠 to suppressed cell 𝑖 and lower

bounds for the values of 𝑥𝑖
𝑟 (𝑟 ≠ 𝑠, 𝑡) from 𝑥𝑖. The lower bound for 𝑥𝑖

𝑟 from the

perspective of contributor 𝑠 is based on his prior knowledge (parameter 𝑞 of the

prior/posterior rule) and equals (1 −
𝑞

100
) 𝑥𝑖

𝑟 if 𝑥𝑖
𝑟 ≥ 0 and (1 +

𝑞

100
) 𝑥𝑖

𝑟 if 𝑥𝑖
𝑟 < 0.

CBS | Discussion Paper | February 2019 7

The upper bound for 𝑥𝑖
𝑡, 𝑈𝑠(𝑥𝑖

𝑡), from the perspective of contributor 𝑠 is hence

given by

𝑈𝑠(𝑥𝑖
𝑡) = 𝑥𝑖 − 𝑥𝑖

𝑠 − (1 −
𝑞

100
) ∑ 𝑥𝑖

𝑟

𝑟:𝑥𝑖
𝑟≥0

𝑟≠𝑠,𝑡

− (1 +
𝑞

100
) ∑ 𝑥𝑖

𝑟

𝑟:𝑥𝑖
𝑟<0

𝑟≠𝑠,𝑡

= 𝑥𝑖
𝑡 +

𝑞

100
∑ |𝑥𝑖

𝑟|

𝑟≠𝑠,𝑡

In a similar way contributor 𝑠 can derive that the lower bound for 𝑥𝑖
𝑡 from his

perspective, 𝐿𝑠(𝑥𝑖
𝑟), is given by

𝐿𝑠(𝑥𝑖
𝑡) = 𝑥𝑖

𝑡 −
𝑞

100
∑ |𝑥𝑖

𝑟|

𝑟≠𝑠,𝑡

Cell 𝑖 is unsafe if and only if 𝑈𝑠(𝑥𝑖
𝑡) < 𝑥𝑖

𝑡 + (
𝑝

100
) |𝑥𝑖

𝑡| (or equivalently 𝐿𝑠(𝑥𝑖
𝑡) >

𝑥𝑖
𝑡 − (

𝑝

100
) |𝑥𝑖

𝑡|) for some contributors 𝑠 and 𝑡. So, cell 𝑖 is unsafe if and only if
𝑞

100
∑ |𝑥𝑖

𝑟|𝑟≠𝑠,𝑡 <
𝑝

100
|𝑥𝑖

𝑡| for all contributors 𝑠 and 𝑡 (𝑠 ≠ 𝑡). That is, cell 𝑖 is safe if

and only if

𝑞

100
∑ |𝑥𝑖

𝑟|𝑟≠𝑠,𝑡 ≥
𝑝

100
|𝑥𝑖

𝑡| (2.1)

for all contributors 𝑠 and 𝑡 (𝑠 ≠ 𝑡). Since
𝑞

100
∑ |𝑥𝑖

[𝑟]
|𝑟≠1,2 ≥

𝑞

100
∑ |𝑥𝑖

𝑟|𝑟≠𝑠,𝑡 and
𝑝

100
|𝑥𝑖

[1]
| ≥

𝑝

100
|𝑥𝑖

𝑡|, (2.1) is satisfied if

𝑞

100
∑ |𝑥𝑖

[𝑟]
|𝑟≠1,2 ≥

𝑝

100
|𝑥𝑖

[1]
| (2.2)

This extended formulation of the prior/posterior rule that allows for negative

contributions reduces to the traditional prior/posterior rule that allows for only

nonnegative contributions when all contributions are indeed nonnegative.

We can re-express (2.2) as: cell 𝑖 is unsafe if and only if

𝑞

100
∑ |𝑥𝑖

[𝑟]
|

𝑅

𝑟=1

−
𝑞

100
|𝑥𝑖

[2]
| −

𝑞

100
|𝑥𝑖

[1]
| <

𝑝

100
|𝑥𝑖

[1]
|

i.e. if and only if

 (𝑝 + 𝑞) |𝑥𝑖
[1]

| + 𝑞 |𝑥𝑖
[2]

| − 𝑞 ∑ |𝑥𝑖
[𝑟]

|𝑅
𝑟=1 > 0 (2.3)

By defining the sensitivity function

 𝑆𝑝,𝑞(𝑥𝑖) = (𝑝 + 𝑞) |𝑥𝑖
[1]

| + 𝑞 |𝑥𝑖
[2]

| − 𝑞 ∑ |𝑥𝑖
[𝑟]

|𝑅
𝑟=1 , (2.4)

we can express (2.3) as: cell 𝑖 is unsafe if and only if 𝑆𝑝,𝑞(𝑥𝑖) > 0. The sensitivity

function (2.4) is subadditive (see Cox, 1980 and 1981). This means that
𝑆𝑝,𝑞(⋃ 𝑥𝑖𝑖∈𝐼) ≤ ∑ 𝑆𝑝,𝑞(𝑥𝑖)𝑖∈𝐼 for any set of cells 𝐼, where ⋃ 𝑥𝑖𝑖∈𝐼 denotes the

CBS | Discussion Paper | February 2019 8

artificial cell consisting of the union of all data corresponding to the cells 𝑥𝑖 for 𝑖 =

1, … , 𝐼.That is, a combination of cells is at most as sensitive in term of the
sensitivity function 𝑆𝑝,𝑞 as the sum of values of the sensitivity function for the

individual cells. This implies that a combination of safe cells is also safe.

The so-called 𝑝%-rule, extended to allow for negative contributions, is defined as

the prior/posterior rule with parameters 𝑝 and 𝑞 = 1001. In our formulations we

will use the prior/posterior rule, although for computational convenience we will

use 𝑞 = 100 in the examples.

We note that the prior/posterior and the 𝑝%-rule are in fact equivalent. Namely, a

prior/posterior rule with parameters 𝑝 and 𝑞 is equivalent to a 𝑝∗%-rule, with

𝑝∗ = 𝑝 𝑞⁄ as one can see by dividing the left hand-side of (2.3) by 𝑞.

In the rest of Section 2 we will discuss the auditing problem.

2.2 The traditional criterion for the auditign problem

After determining and suppressing the unsafe cells, some of the suppressed cell

values may be re-calculated from the remaining information in the table. Consider

for example Table 1, which is taken from Daalmans and De Waal (2010). In this
table all contributions are known to be nonnegative, and 𝑥1,1 and 𝑥2,1 are primary

suppressions2. Obviously, 𝑥1,1 and 𝑥2,1 must both have the value 100.

Table 1. A table with primary suppressions

 𝐶1 𝐶2 𝐶3 Total

𝑅1 𝑥1,1 1 3 104

𝑅2 𝑥2,1 2 1 103

𝑅3 70 3 2 75

Total 270 6 6 282

As already mentioned in the Introduction, in order to protect suppressed unsafe

cells against recalculation, it is usually necessary to suppress additional cell values.

In Table 2 some cells have been secondarily suppressed.

Table 2. Primary and secondary suppressions

 𝐶1 𝐶2 𝐶3 Total

𝑅1 𝑥1,1 1 𝑥1,3 104

𝑅2 𝑥2,1 2 𝑥2,3 103

𝑅3 70 3 2 75

Total 270 6 6 282

1 The traditional 𝑝%-rule for only non-negative contributions assumes that attackers only know that the lower

bound for any contribution is zero. This means that the traditional 𝑝%-rule for only non-negative
contributions slightly differs from a prior/posterior rule with parameters 𝑝 and 𝑞 = 100, since an attacker
has no knowledge about upper bounds on the contributions.

2 Note that in general formulations we write suppressed cells as 𝑥𝑖, i.e. with one subscript, but in our examples
with two-dimensional tables we will write suppressed cells as 𝑥𝑖,𝑗 , i.e. with two subscripts (for row and

columns, respectively). We hope that this will not confuse the reader.

CBS | Discussion Paper | February 2019 9

In the traditional criterion for the auditing problem a central role is played by the

so-called suppression intervals of the suppressed cell values. The suppression

interval of a suppressed cell is the interval of all possible values that cell could take

for someone who knows nothing more than the published table. The suppression

interval can be calculated by solving simple LP problems. For instance, the
minimum of 𝑥1,1 can be found by solving the LP problem

Minimize 𝑥1,1 subject to

𝑥1,1 + 𝑥1,3 = 103

𝑥1,3 + 𝑥2,3 = 4

𝑥1,1 + 𝑥2,1 = 200

𝑥2,1 + 𝑥2,3 = 101

𝑥𝑖,𝑗 ≥ 0

This yields a minimum of 99 for 𝑥1,1 . Similarly, we find that the maximum for

𝑥1,1 is 101. The suppression interval for 𝑥1,1 is hence [99,101].

Traditionally, a table with suppressed cells is considered safe if the suppression

interval for each sensitive cell is “sufficiently” wide. “Sufficiently” wide is usually

operationalized by requiring that the upper bound on the suppression interval is at

least equal to that value for which the cell would be safe according to sensitivity

measure, i.e. the prior/posterior rule in our case. We will refer to this criterion as

the traditional auditing criterion. In Sections 2.3 and 5.1 we will give some

examples illustrating how “sufficiently” wide is operationalized.

2.3 Why do we need an alternative criterion for the auditing
problem?

The traditional criterion for the auditing problem as described in Section 2.2

suffers from a flaw as pointed out by Daalmans and De Waal (2010), namely that

the traditional criterion for the auditing problem may be inconsistent with the

applied sensitivity measure. We will give an example to illustrate the point.

Suppose that in Table 3 only cell 𝑅1 × 𝐶1is unsafe according to the used sensitivity

measure, the prior/posterior rule with 𝑝 = 20 and 𝑞 = 100 and that the other

cells are safe. Suppose furthermore that the largest two contributions to cell 𝑅1 ×

𝐶1 equal 155 and 4, respectively, and that the largest contribution to cell 𝑅2 × 𝐶1

equals 28.

Table 3. An unprotected table (example 1)

 𝐶1 𝐶2 Total

𝑅1 160 340 500

𝑅2 50 60 110

𝑅3 610 270 880

Total 820 670 1490

According to the traditional criterion for the auditing problem, the upper bound on

the suppression interval of cell 𝑅1 × 𝐶1 should be at least 190. Namely, when the

upper bound on the suppression interval equals 190, the second largest

CBS | Discussion Paper | February 2019 10

contributor to 𝑅1 × 𝐶1 can derive that the upper bound on the largest contribution

to 𝑅1 × 𝐶1 is 186 (=190–4). This upper bound exceeds the actual value of the

largest contribution to cell 𝑅1 × 𝐶1 (i.e. 155) by exactly 20%. The suppression

interval of cell 𝑅1 × 𝐶1 in Table 4 is given by [100,210], which can be checked in

the manner explained in Section 2.2. So, using the traditional criterion for the

auditing problem Table 4 is considered safe.

Table 4. A safe table according to the traditional auditing criterion

(example 1)

 𝐶1 𝐶2 Total

𝑅1 × × 500

𝑅2 × × 110

𝑅3 610 270 880

Total 820 670 1490

Now, consider Table 5, which has been obtained from Table 3 by recoding

categories 𝑅1 and 𝑅2 into one category. Note that from Table 4 it is clear that

values of cells 𝐶1 × 𝑅1 and 𝐶1 × 𝑅2 add up to 210, and that the values of cells 𝐶2 ×

𝑅1 and 𝐶2 × 𝑅2 add up to 400. Table 4 contains a bit more information than Table

5 since Table 5 does not give the totals for categories 𝑅1 and 𝑅2 separately, only

the total for 𝑅1 and 𝑅2 together.

Table 5. A recoded table (example 1)

 𝐶1 𝐶2 Total

𝑅1 & 𝑅2 210 400 610

𝑅3 610 270 880

Total 820 670 1490

The inconsistency between the traditional criterion for the auditing problem and

the sensitivity measure becomes clear from Table 5. Namely, cell (𝑅1 & 𝑅2) × 𝐶1 in

Table 5 is unsafe according to the used sensitivity measure. So, although Table 5

contains a bit less information than Table 4, Table 5 is considered unsafe whereas

Table 4 is considered safe!

In the above example, cell suppression was basically equivalent to recoding the

table. The same kind of inconsistency as noted can also occur when cell

suppression is not equivalent to recoding the table. We illustrate this by a small

extension of the above example, and consider Table 6.

Table 6. An unprotected table (example 2)

 𝐶1 𝐶2 𝐶3 Total

𝑅1 160 (155;4) 380 (80;50) 340 (90;50) 880

𝑅2 50 (28;10) 80 (24;16) 60 (18;12) 190

𝑅3 610 (110;100) 800 (250;200) 270 (80;60) 1680

Total 820 1260 670 2740

In Table 6, we mention the two largest contributions per cell between brackets.

We again assume that cell 𝑅1 × 𝐶1 is unsafe, whereas the other cells are safe.

Again, we also assume that largest two contributions to cell 𝑅1 × 𝐶1 equal 155 and

CBS | Discussion Paper | February 2019 11

4, respectively and that the largest contribution to cell 𝑅2 × 𝐶1 equals 28. We

again use a prior/posterior rule with parameters 𝑝 = 20 and 𝑞 = 100.

According to the traditional criterion for the auditing problem, Table 7 is

considered safe for the same reason as for Table 4.

Indeed, 𝜏-ARGUS (Giessing, 2004, and De Wolf et al., 2014) will give Table 7 as

output, if we measure information loss due to suppression by the sum of the

suppressed cell values.

Table 7. A safe table according to the traditional auditing criterio n

(example 2)

 𝐶1 𝐶2 𝐶3 Total

𝑅1 × 380 × 880

𝑅2 × 80 × 190

𝑅3 610 800 270 1680

Total 820 1260 670 2740

However, the largest contributor to cell 𝑅2 × 𝐶1 can derive that the upper bound

on the largest contribution to cell 𝑅1 × 𝐶1 is 820 − 610 − 28 − 0 = 182 (the first

two terms are available from the table, the third term is his own contribution to

cell 𝑅2 × 𝐶1, and the fourth term is a lower bound on the other contributions to

cells 𝑅1 × 𝐶1 and 𝑅2 × 𝐶1, which can be computed using the 𝑞 parameter). Since,

182 is within 20% of 155, the combination of cells 𝑅1 × 𝐶1 and 𝑅2 × 𝐶1 is

considered unsafe according to the applied sensitivity measure.

This phenomenon where several suppressed cell values can be combined into an

unsafe combined cell has been referred to as an “ad-hoc roll up” (see Sande,

2000).

2.4 The alternative criterion for the auditing problem by
Daalmans and De Waal (2010)

Daalmans and De Waal (2010) note that conceptually separate cells and

aggregations of cells for which the total value is known are basically the same and

should hence be treated the same way. Namely, in both cases, we have some

underlying microdata from individual persons or enterprises summing up to a

known total. From this point of view it is logical that separate cells and

aggregations of cells should be subjected to the same sensitivity measure.

Daalmans and De Waal (2010) therefore consider a table safe if and only if all

aggregations of suppressed cells are safe, using the same sensitivity measure (or a

slightly extended version thereof) as for separate cells.

We will illustrate the concept of aggregations by means of an example. Let us

suppose that we aim to protect Table 8 against disclosure. To each cell in this

table, one or more contributors contribute. We suppose that cells 𝑅1 × 𝐶1 and

𝑅5 × 𝐶3 are the sensitive cells in this table.

CBS | Discussion Paper | February 2019 12

Table 8. An unprotected table (example 3)

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 Total

𝑅1 16 44 48 35 18 161

𝑅2 47 82 51 80 29 289

𝑅3 59 88 16 28 86 277

𝑅4 61 78 59 94 84 376

𝑅5 3 93 82 41 5 224

Total 186 385 256 278 222 1327

Let us suppose that Table 9 is suggested – usually by a software package such as 𝜏-

ARGUS – as a protected version of Table 8. We aim to check whether Table 9 is

indeed safe.

Table 9. The “protected” version of Table 8 (example 3)

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 Total

𝑅1 𝑥1,1 44 48 35 𝑥1,5 161

𝑅2 47 82 𝑥2,3 80 𝑥2,5 289

𝑅3 59 88 16 28 86 277

𝑅4 61 78 59 94 84 376

𝑅5 𝑥5,1 93 𝑥5,3 41 5 224

Total 186 385 256 278 222 1327

The values of some aggregations can be deduced immediately, simply by looking at

the rows and columns of the table. Such aggregations are called explicit

aggregations. The values of aggregations that are linear combinations of the

explicit ones are known too. Such aggregations are called implicit aggregations.

An explicit aggregation always is a sum of suppressed cells in one dimension. That

is, in a two-dimensional table an explicit aggregation is always a sum of suppressed

cells in a certain row or a certain column. The explicit aggregations of Table 9

together with their known values are:

 𝑥1,1 + 𝑥1,5 = 34 (2.5)

 𝑥1,5 + 𝑥2,5 = 47 (2.6)

 𝑥2,5 + 𝑥2,3 = 80

 𝑥2,3 + 𝑥5,3 = 133

 𝑥5,3 + 𝑥5,1 = 85

 𝑥5,1 + 𝑥1,1 = 19

An example of an implicit aggregation with its known value is

 𝑥1,1 − 𝑥2,5 = −13 (2.7)

This implicit aggregation is obtained by subtracting the second explicit aggregation

(2.6) from the first (2.5).

Any (explicit or implicit) aggregation for Table 9 can be written as

 𝜇1(𝑥1,1 + 𝑥1,5) + 𝜇2(𝑥1,5 + 𝑥2,5) + 𝜇3(𝑥2,5 + 𝑥2,3) +

 𝜇4(𝑥2,3 + 𝑥5,3) + 𝜇5(𝑥5,3 + 𝑥5,1) + 𝜇6(𝑥5,1 + 𝑥1,1) (2.8)

CBS | Discussion Paper | February 2019 13

where 𝜇1 to 𝜇6 are parameters that can, in principle, take any value between −∞

and ∞. However, since

 𝛼𝜇1(𝑥1,1 + 𝑥1,5) + 𝛼𝜇2(𝑥1,5 + 𝑥2,5) + 𝛼𝜇3(𝑥2,5 + 𝑥2,3) +

 𝛼𝜇4(𝑥2,3 + 𝑥5,3) + 𝛼𝜇5(𝑥5,3 + 𝑥5,1) + 𝛼𝜇6(𝑥5,1 + 𝑥1,1)

is essentially the same aggregation as (2.8) for any 𝛼 ≠ 0, we may rescale the 𝜇𝑖 so

−1 ≤ 𝜇𝑘 ≤ 1 (for 𝑘 = 1, … ,6). Note that (2.7) can be obtained from (2.8) by

setting 𝜇1 = 1, 𝜇2 = −1, and 𝜇3 = 𝜇4 = 𝜇5 = 𝜇6 = 0.

The prior/posterior rule as presented in Section 2.1 needs to be reformulated

slightly for an aggregation with a known total. We will write such an aggregation
𝑋𝑗 as

 𝑋𝑗 = ∑ 𝜆𝑖
𝑗
𝑥𝑖

𝑆𝐶
𝑖=1 (2.9)

where 𝜆𝑖
𝑗
 (𝑖 = 1, … , 𝑆𝐶) are coefficients and the superscript 𝑗 is used to identify the

aggregation. For example, in the case of (2.8) we have 𝜆1,1 = 𝜇1 + 𝜇6, 𝜆1,5 = 𝜇1 +

𝜇2, 𝜆2,5 = 𝜇2 + 𝜇3, 𝜆2,3 = 𝜇3 + 𝜇4, 𝜆5,3 = 𝜇4 + 𝜇5, 𝜆5,1 = 𝜇5 + 𝜇6. The coefficients

𝜆𝑖
𝑗
 defining an aggregation given by (2.9) may differ from -1 or +1.

Note that an aggregation 𝑋𝑗 is defined by the 𝜆𝑖
𝑗
 only, i.e. without its known total.

However, in some cases we will also give the known total of such an aggregation.
The contribution of contributor 𝑟 (𝑟 = 1, … , 𝑅) to aggregation 𝑋𝑗 is given by

∑ 𝜆𝑖
𝑗
𝑥𝑖

𝑟𝑆𝐶
𝑖=1 . Since we need the absolute contributions in an aggregation (see also

Section 2.1), we define two operators. The first operation is the ΦABS
𝑟 operator,

which returns the absolute contribution of contributor 𝑟 (𝑟 = 1, … , 𝑅) to
aggregation 𝑋𝑗. It is defined by

ΦABS
𝑟 (𝑋𝑗) = ∑|𝜆𝑖

𝑗
𝑥𝑖

𝑟|

𝑆𝐶

𝑖=1

The ΦABS
𝑟 operator can also be applied to a single suppressed cell 𝑖 (𝑖 = 1, … , 𝑆𝐶):

ΦABS
𝑟 (𝑥𝑖) = |𝑥𝑖

𝑟|. Later in this paper we will also use the ΦTOT operator. We need

this operator for a single suppressed cell 𝑥𝑖 (𝑖 = 1, … , 𝑆𝐶) only, and it is defined by

ΦTOT(𝑥𝑖) = ∑|𝑥𝑖
𝑟|

𝑅

𝑟=1

In a similar way as in Section 2.1 we can now derive that aggregation 𝑋𝑗 is safe if

and only if

𝑞

100
∑ |ΦABS

[𝑟]
(𝑋𝑗)|

𝑟≠1,2

≥
𝑝

100
|ΦABS

[1]
(𝑋𝑗)|

where we again use the superscript [𝑟] to denote decreasingly ordered absolute

contributions to aggregation 𝑋𝑗, i.e. |ΦABS
[1]

(𝑋𝑗)| ≥ |ΦABS
[2]

(𝑋𝑗)| ≥ ⋯ ≥ |ΦABS
[𝑅]

(𝑋𝑗)| ≥

CBS | Discussion Paper | February 2019 14

0. That is, aggregation 𝑋𝑗 is safe if and only if (𝑝 + 𝑞) |ΦABS
[1]

(𝑋𝑗)| + 𝑞 |ΦABS
[2]

(𝑋𝑗)| −

𝑞 ∑ |ΦABS
[𝑟]

(𝑋𝑗)|𝑅
𝑟=1 ≤ 0.

Equivalently, aggregation 𝑋𝑗 is unsafe if and only if

 (𝑝 + 𝑞) |ΦABS
[1]

(𝑋𝑗)| + 𝑞 |ΦABS
[2]

(𝑋𝑗)| − 𝑞 ∑ |ΦABS
[𝑟]

(𝑋𝑗)|𝑅
𝑟=1 > 0 (2.10)

For details of the derivation of (2.10), we refer to Daalmans and De Waal (2010).

As already noted in Section 2.1, the prior/posterior rule with parameters 𝑝 and 𝑞 is

equivalent to a 𝑝∗%-rule with 𝑝∗ = 𝑝 𝑞⁄ .

Similar to the sensitivity function (2.4) for individual cells, we can define the

sensitivity function

 𝑆𝑝,𝑞
agg

(𝑋𝑗) = (𝑝 + 𝑞) |ΦABS
[1]

(𝑋𝑗)| + 𝑞 |ΦABS
[2]

(𝑋𝑗)| − 𝑞 ∑ |ΦABS
[𝑟]

(𝑋𝑗)|𝑅
𝑟=1 (2.11)

for aggregations.
One way to look at sensitivity function (2.11) for an aggregation 𝑋𝑗 is that all

absolute contributions ΦABS
𝑟 (𝑋𝑗) = ∑ |𝜆𝑖

𝑗
𝑥𝑖

𝑟|
𝑆𝐶
𝑖=1 (𝑟 = 1, … , 𝑅) are first combined

into one ad-hoc cell and next these absolute contributions are seen as

contributions of individual contributors to that cell. That is,

 𝑆𝑝,𝑞
agg

(𝑋𝑗) = 𝑆𝑝,𝑞({ΦABS
1 (𝑋𝑗), ΦABS

2 (𝑋𝑗), … , ΦABS
𝑅 (𝑋𝑗)}), (2.12)

where {ΦABS
1 (𝑋𝑗), ΦABS

2 (𝑋𝑗), … , ΦABS
𝑅 (𝑋𝑗)} is an ad-hoc cell with contributions

ΦABS
1 (𝑋𝑗) to ΦABS

𝑅 (𝑋𝑗).

3. A Linear Programming
Formulation for the Auditing
Problem

To check whether a table with cell suppressions is safe according to their criterion,

Daalmans and De Waal (2010) propose to determine the most sensitive

aggregation. If even the most sensitive aggregation is safe, the table is safe.

Finding the most sensitive aggregation is not trivial, however. Daalmans and De

Waal (2010) formulate a complicated mixed-integer programming problem that

needs to be solved in order to find the most sensitive aggregation of suppressed

cells. For more information on that formulation we refer to Section 6 of Daalmans

and De Waal (2010).

Mixed-integer programming problems can be notoriously hard to solve. In

particular, the computing time can become very large for large or even medium-

sized problem instances. In principle, the computing time of a mixed-integer

programming problem can be exponential in terms of its unknowns.

CBS | Discussion Paper | February 2019 15

In order to overcome this problem, we propose to solve a sequence of LP

problems, where we – for each of these LP problems – fix the attacker and

attacked contributor beforehand. These LP problems can generally be solved quite

quickly. Practical advantages are that solvers for LP problems are more easily

available and easier to program than solvers for mixed-integer programming

problems. In essence, a mixed-integer programming problem is often also solved

by cleverly solving a sequence of LP problems. What makes our approach different

is that for each LP problem we can fix the attacker and attacked contributor

beforehand.

The underlying idea of our LP approach is that, for each sensitive cell, we will

check how accurate any other contributor to the table can calculate the value of

the largest contributor to that sensitive cell. We only have to check this for the

largest contributors to the other suppressed cells and for the second largest

contributor to the sensitive cell itself. Each of these checks can be expressed as an

LP problem. This kind of audit check is also available in 𝜏-ARGUS, but only for

contributors within the same suppressed cell, not for contributors within

aggregations of suppressed cells.

We will illustrate the LP approach by means of Tables 8 and 9. We recall that Table
8 has two unsafe cells, denoted as 𝑥1,1 and 𝑥5,3 in Table 9. As already noted in

Section 2.4, all linear aggregations for Table 9 can be written as (2.8) with −1 ≤
𝜇𝑘 ≤ 1 (for 𝑘 = 1, … ,6). For 𝑥1,1, we then check whether, in a certain (explicit or

implicit) aggregation, the contributor with the largest contributions to cells 𝑥1,5,

𝑥2,5, 𝑥2,3, 𝑥5,3, respectively 𝑥5,1 can re-calculate the largest absolute contribution

to 𝑥1,1 too accurately in any aggregation. We also check whether the second the

largest contributions to 𝑥1,1 can re-calculate the largest absolute contribution to

𝑥1,1 too accurately in any aggregation.

Say, we first check whether the largest contributor to cell 𝑥1,5 can re-calculate the

largest contribution to cell 𝑥1,1 too accurately. This largest contribution to cell 𝑥1,5

can, in principle, have 2 different signs, i.e. a minus sign or a plus sign, in an
aggregation involving 𝑥1,1. For each of the two possible signs, we perform a check.

We perform similar checks for the largest contributors to 𝑥2,5, 𝑥2,3, 𝑥5,3 and 𝑥5,1,

respectively. For the second largest contribution to 𝑥1,1 we have to perform only

one check, because the second largest contribution to 𝑥1,1 can only have the same

sign as the largest contribution to 𝑥1,1 in any aggregation.

Similarly, for 𝑥5,3, we check whether the contributors with the largest

contributions to cell 𝑥5,1, 𝑥1,1, 𝑥1,5, 𝑥2,5, respectively 𝑥2,3, and the second largest

contribution to cell 𝑥5,3, can re-calculate the largest contribution to 𝑥5,3 too

accurately.

We have to check 22 = 2 × (5 × 2 + 1) relatively small LP problems instead of

one large mixed-integer programming problem. Here the first 2 refers to the

number of sensitive cells, the 5 to the number of other suppressed cells besides

the unsafe cell under consideration, the second 2 to the possible signs of an

attacker in an aggregation, and the 1 to the second largest contribution in the

suppressed cell under consideration.

We will describe one of those 22 LP problems, namely the LP problem to check
whether the contributor with the largest contribution to cell 𝑥1,5 can re-calculate

the largest contribution to 𝑥1,1 (too) accurately. The contribution of cell 𝑅1 × 𝐶1 to

an aggregation given by (2.8) is (𝜇6 + 𝜇1)𝑥1,1. Similarly, we can find the

contribution of the other suppressed cells to aggregation (2.8).

CBS | Discussion Paper | February 2019 16

According to criterion (2.10), we should look at the absolute contributions to an

aggregation given by (2.8). In order to find the absolute contributions to an
aggregation we introduce variables 𝑦𝑖,𝑗

+ and 𝑦𝑖,𝑗
− for the suppressed cells and some

constraints for these variables. For instance, for 𝑦1,1
+ and 𝑦1,1

− we demand that

𝑦1,1

+ ≥ (𝜇6 + 𝜇1)ΦTOT(𝑥1,1)

and
𝑦1,1

− ≥ −(𝜇6 + 𝜇1)ΦTOT(𝑥1,1)

When 𝑦1,1
+ + 𝑦1,1

− is minimized, this sum will become equal to |(𝜇6 +

𝜇1)ΦTOT(𝑥1,1)| = |∑ (𝜇6 + 𝜇1)|𝑥1,1
𝑟 |𝑅

𝑟=1 |, i.e. the sum of the absolute contributions

to cell 𝑅1 × 𝐶1 in aggregation (2.8).
The LP problem assuming that the largest contribution to 𝑥1,1 is attacked by the

largest contribution to 𝑥1,5 is given in (3.1) to (3.19) below.

 Maximize (𝑝 + 𝑞)𝑆 + 𝑞𝐴 − 𝑞𝑇 (3.1)

subject to

 𝑇 = 𝑦1,1

+ + 𝑦1,5
+ + 𝑦2,5

+ + 𝑦2,3
+ + 𝑦5,3

+ +𝑦5,1
+ + (3.2)

 𝑦1,1
− + 𝑦1,5

− + 𝑦2,5
− + 𝑦2,3

− + 𝑦5,3
− +𝑦5,1

−

 𝑦1,1
+ ≥ (𝜇6 + 𝜇1)ΦTOT(𝑥1,1) (3.3)

 𝑦1,5
+ ≥ (𝜇1 + 𝜇2)ΦTOT(𝑥1,5) (3.4)

 𝑦2,5
+ ≥ (𝜇2 + 𝜇3)ΦTOT(𝑥2,5) (3.5)

 𝑦2,3
+ ≥ (𝜇3 + 𝜇4)ΦTOT(𝑥2,3) (3.6)

 𝑦5,3
+ ≥ (𝜇4 + 𝜇5)ΦTOT(𝑥5,3) (3.7)

 𝑦5,1
+ ≥ (𝜇5 + 𝜇6)ΦTOT(𝑥5,1) (3.8)

 𝑦11
− ≥ −(𝜇6 + 𝜇1)ΦTOT(𝑥1,1) (3.9)

 𝑦15
− ≥ −(𝜇1 + 𝜇2)ΦTOT(𝑥1,5) (3.10)

 𝑦25
− ≥ −(𝜇2 + 𝜇3)ΦTOT(𝑥2,5) (3.11)

 𝑦23
− ≥ −(𝜇3 + 𝜇4)ΦTOT(𝑥2,3) (3.12)

 𝑦53
− ≥ −(𝜇4 + 𝜇5)ΦTOT(𝑥5,3) (3.13)

 𝑦51
− ≥ −(𝜇5 + 𝜇6)ΦTOT(𝑥5,1) (3.14)

 𝑦1,1
+ ≥ 0, 𝑦1,5

+ ≥ 0, 𝑦2,5
+ ≥ 0, 𝑦2,3

+ ≥ 0, 𝑦5,3
+ ≥ 0, 𝑦5,1

+ ≥ 0 (3.15)

 𝑦1,1
− ≥ 0, 𝑦1,5

− ≥ 0, 𝑦2,5
− ≥ 0, 𝑦2,3

− ≥ 0, 𝑦5,3
− ≥ 0, 𝑦5,1

− ≥ 0 (3.16)

 −1 ≤ 𝜇𝑖 ≤ 1 (for 𝑖 = 1, … ,6) (3.17)

 𝑆 ≤ (𝜇6 + 𝜇1)|𝑥1,1
max| (3.18)

 𝐴 ≤ (𝜇1 + 𝜇2)|𝑥1,5
max| (3.19)

Here 𝑥1,1

max and 𝑥1,5
max are the maximum contributions to cells 𝑅1 × 𝐶1 and 𝑅5 × 𝐶3,

respectively. The 𝜇𝑘 (𝑘 = 1, … ,6) refer to the explicit aggregations (see (2.8)). The
unknowns in the above LP problem are the 𝜇𝑘 (𝑘 = 1, … ,6), 𝑆, 𝐴, 𝑇 and the 𝑦𝑖,𝑗

+

and 𝑦𝑖,𝑗
− .

Note that, when we maximize (3.1), 𝑇 is in fact

 𝑇 = |𝑦1,1| + |𝑦1,5| + |𝑦2,5| + |𝑦2,3| + |𝑦5,3| + |𝑦5,1| = ∑ ΦABS
[𝑟] (𝑋∗)𝑅

𝑟=1

CBS | Discussion Paper | February 2019 17

where aggregation 𝑋∗ is the optimal aggregation for the above LP problem, since

maximizing (3.1) will make 𝑇 as small as possible (and 𝐴 and 𝑆 as large as possible).

Equations (3.17) ensure that the outcome of (3.1) is finite. Equation (3.1) is the

equivalent of (2.10). As already explained, equations (3.2) to (3.16) are needed to

ensure that 𝑇 = ∑ ΦABS
[𝑟] (𝑋∗)𝑅

𝑟=1 . Equation (3.18) ensures that 𝑆 = |(𝜇6 +

𝜇1)ΦTOT(𝑥1,1
max)|.

However, it is not guaranteed that for this choice of the 𝜇𝑘 (𝑘 = 1, … ,6), we also

have that 𝐴 = |(𝜇1 + 𝜇2)ΦTOT(𝑥1,5
max)|, since 𝜇1 + 𝜇2 is not necessarily nonnegative

in the optimal aggregation 𝑋∗. Therefore, we also solve a second problem given

by: maximize (3.1) subject to (3.2) to (3.18) and

 𝐴 ≤ −(𝜇1 + 𝜇2)ΦTOT(𝑥1,5

max) (3.20)

In either of the two problems we will now have that 𝜇1 + 𝜇2 or −(𝜇1 + 𝜇2) is

nonnegative, and hence either the LP problem with (3.19) or the one with (3.20)

ensures that 𝐴 = |(𝜇1 + 𝜇2)ΦTOT(𝑥1,5
max)|. That is, one of the two LP problems

solves the problem we were aiming to solve, and the most sensitive aggregation

(in terms of target function (3.1)) will be constructed. If the optimal value of (3.1)

is positive, the thus constructed aggregation is unsafe. Otherwise, even the most

sensitive aggregation where the largest contribution to cell 𝑅1 × 𝐶1 is attacked by

the largest contribution to cell 𝑅1 × 𝐶5 is still safe.

4. Finding Secondary Cell
Suppressions

The LP formulation for checking whether a table with suppressed cells values is

safe for publication, can also be used as a basis for a method for actually finding

secondarily suppressed cells, i.e. for solving the secondary suppression problem.

The simplest way of doing this is to combine the LP approach described in Section

3 with the so-called hypercube approach for cell suppression (see, e.g., Repsilber,

1994 and 2002, and Giessing and Repsilber, 2002).

The hypercube approach is essentially a sequential approach, where for each

unsafe table a hypercube of suppressed cells is constructed in order to protect the

selected unsafe cell. In a two-dimensional table without any hierarchical structure

such a hypercube is simply a rectangle. In a three-dimensional table without any

hierarchical structure, such a hypercube is a cuboid.

A hypercube is constructed by testing all possible hypercubes with the selected

unsafe cell as one of its corner points. When a hypercube sufficiently protects the

selected unsafe cell, i.e. if the largest contribution of the unsafe cell under

consideration is sufficiently protected in any aggregation that can be constructed

from this hypercube, the hypercube is a candidate for suppression. Of all

candidate hypercubes, the one that leads to the least information loss is selected,

and all corner points of the selected hypercube are suppressed.

CBS | Discussion Paper | February 2019 18

In order to combine our LP approach for the auditing problem with the hypercube

approach, all we need to do is to invoke our LP approach whenever we need to

test whether a hypercube sufficiently protects the selected unsafe cell. That is, we

need to check if any of the contributors to a corner point of the hypercube can

estimate the value of the largest contributor to the unsafe cell too accurately. We

have implemented this basic idea in prototype software in order to test whether

this approach is indeed feasible in practice.

That a table with suppressed cells obtained by the hypercube method in

combination with our LP approach for the auditing problem is safe is non-trivial

and requires some proof. Table 10 illustrates why it is not trivial that a

combination of safe hypercubes – one for each unsafe cell – leads to a safe table.

Table 10. A table with suppressions

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 Total

𝑅1 𝑥1,1 𝑥1,2 48 35 18 161

𝑅2 𝑥2,1 𝑥2,2 51 80 𝑥2,5 289

𝑅3 59 88 16 28 86 277

𝑅4 61 𝑥4,2 59 94 𝑥4,5 376

𝑅5 3 93 82 41 5 224

Total 186 385 256 278 222 1327

Let us assume that cells 𝑥2,2 and 𝑥4,5 are unsafe, that the (safe) hypercube for 𝑥2,2

is given by 𝑥1,1, 𝑥1,2, 𝑥2,1 and 𝑥2,2 itself, and that the (safe) hypercube for 𝑥4,5 is

given by 𝑥2,2, 𝑥2,5, 𝑥4,2 and 𝑥4,5 itself. One could imagine that it is possible for 𝑥2,2

or 𝑥4,5 to be involved in an unsafe aggregation that involves both hypercubes, for

instance the aggregation 𝑥1,1 − 𝑥2,2 + 𝑥4,5 = 18, which is obtained by adding

𝑥1,1 + 𝑥1,2 = 60 to 𝑥4,2 + 𝑥4,5 = 162, and then subtracting the aggregation 𝑥1,2 +

𝑥2,2 + 𝑥4,2 = 204. We will, however, show that it is not possible for 𝑥2,2 or 𝑥4,5 to

be involved in an unsafe aggregation that involves both hypercubes.

We start by proving a lemma.

Lemma: Suppose that an unsafe cell 𝑥𝑖 is protecting by constructing an
aggregation 𝑋𝑗, for instance a hypercube as is done in the hypercube method.

Suppose furthermore that we have a larger aggregation 𝑋𝑘 that contains 𝑋𝑗, i.e. if

𝑋𝑗 = ∑ 𝜆𝑖
𝑗
𝑥𝑖𝑖∈𝑆 for some set of suppressed cells 𝑆 then 𝑋𝑘 = ∑ 𝜆𝑖

𝑗
𝑥𝑖𝑖∈𝑆 + ∑ 𝜆𝑡

𝑘𝑥𝑡𝑡∈𝑇

where 𝑇 is another set of suppressed cells (𝑇 ∩ 𝑆 = ∅). Then unsafe cell 𝑥𝑖 is

sufficiently protected from an attack from a contribution to 𝑋𝑘.

Proof: Let us denote the largest contribution to cell 𝑥𝑖 by 𝑥𝑖
[1]

. Since cell 𝑥𝑖
[1]

 is

protected by aggregation 𝑋𝑗 we have (𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| + 𝑞 |ΦABS

[2]
(𝑋𝑗)| −

𝑞 ∑ |ΦABS
[𝑟]

(𝑋𝑗)|𝑅
𝑟=1 ≤ 0. For aggregation 𝑋𝑘 we have two options: the largest

contribution to 𝑋𝑘 besides 𝜆𝑖
𝑗
𝑥𝑖

[1]
 is the second largest contribution as to 𝑋𝑗, i.e.

ΦABS
[2] (𝑋𝑘) = ΦABS

[2]
(𝑋𝑗),or the largest contribution to 𝑋𝑘 besides 𝜆𝑖

𝑗
𝑥𝑖

[1]
is not the

second largest contribution to 𝑋𝑗, i.e. the largest contribution to 𝑋𝑘 besides 𝜆𝑖
𝑗
𝑥𝑖

[1]

is not involved in 𝑋𝑗.

In the first case we have for 𝑋𝑘:

CBS | Discussion Paper | February 2019 19

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| + 𝑞 |ΦABS

[2]
(𝑋𝑘)| − 𝑞 ∑ |ΦABS

[𝑟]
(𝑋𝑘)|

𝑅

𝑟=1

=

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| + 𝑞 |ΦABS

[2]
(𝑋𝑗)| − 𝑞 ∑ |ΦABS

[𝑟] (𝑋𝑘)|

𝑅

𝑟=1

≤

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| + 𝑞 |ΦABS

[2]
(𝑋𝑗)| − 𝑞 ∑ |ΦABS

[𝑟]
(𝑋𝑗)|

𝑅

𝑟=1

≤ 0

The first inequality follows from the assumption that 𝑋𝑘 contains 𝑋𝑗.

In the second case we have for 𝑋𝑘:

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| + 𝑞 |ΦABS

[2] (𝑋𝑘)| − 𝑞 ∑ |ΦABS
[𝑟] (𝑋𝑘)|

𝑅

𝑟=1

=

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| − 𝑞 ∑ |ΦABS

[𝑟] (𝑋𝑘)|

𝑅

𝑟=1,𝑟≠2

≤

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| − 𝑞 ∑ |ΦABS

[𝑟]
(𝑋𝑗)|

𝑅

𝑟=1

≤

(𝑝 + 𝑞) |𝜆𝑖
𝑗
𝑥𝑖

[1]
| + 𝑞 |ΦABS

[2]
(𝑋𝑗)| − 𝑞 ∑ |ΦABS

[𝑟]
(𝑋𝑗)|

𝑅

𝑟=1

≤ 0

The first inequality follows from −𝑞 ∑ |ΦABS
[𝑟]

(𝑋𝑘)|𝑅
𝑟=1,𝑟≠2 ≤ −𝑞 ∑ |ΦABS

[𝑟]
(𝑋𝑗)|𝑅

𝑟=1

since the largest contribution to 𝑋𝑘 besides 𝜆𝑖
𝑗
𝑥𝑖

[1]
 is not involved in 𝑋𝑗.

In both cases we conclude that the largest contribution to cell 𝑥𝑖 is sufficiently

protected by 𝑋𝑘, which concludes the proof of the lemma. •

Note that aggregation 𝑋𝑘 itself need not be safe since it may involve other unsafe

cells besides cell 𝑥𝑖. Those other unsafe cells may be insufficiently protected by 𝑋𝑘.

We provide a short illustration of the second case mentioned in the proof of the

above lemma using Table 11.

Table 11. Illustration of part of the proof of the lemma

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 Total

𝑅1 𝑥1,1 𝑥1,2 300 200 100 800

𝑅2 𝑥2,1 𝑥2,2 𝑥2,3 200 300 750

𝑅3 250 𝑥4,2 𝑥4,3 200 350 1000

Total 450 250 500 600 750 2550

Suppose 𝑥2,1 and 𝑥2,3 are the unsafe cells in Table 11. Both cells have only one

contributor with contribution 100. The hypercube constructed to protect 𝑥2,1

consists of 𝑥1,1, 𝑥1,2, 𝑥2,2 and 𝑥2,1 itself. The hypercube constructed to protect 𝑥2,3

consists of 𝑥4,3, 𝑥4,2, 𝑥2,2 and 𝑥2,3 itself. Suppose cell 𝑥2,2 consists four

contributors, three with a contribution of 10 and one with a contribution of 20.

We assume that a (𝑝, 𝑞)-rule with 𝑝 = 20 and 𝑞 = 100 is used. One aggregation in
the hypercube for 𝑥2,1 is 𝑥2,1 + 𝑥2,2 = 150. Based on this aggregation, the largest

contributor to cell 𝑥2,2 can derive an upper bound of 150 − 20 − 0 = 130 (the

CBS | Discussion Paper | February 2019 20

total for the aggregation minus the attacker’s own contribution minus lower
bounds for the other contributors to cell 𝑥2,3) for the (only) contribution to cell

𝑥2,1. Since this deviates more than 20% from the true value, this aggregation

indeed sufficiently protects cell 𝑥2,1. Similarly, 𝑥2,2 + 𝑥2,3 = 150 sufficiently

protects the only contribution to cell 𝑥2,3.

We examine aggregation 𝑥2,1 + 𝑥2,2 + 𝑥2,3 = 250 and check what the contributor

to cell 𝑥2,3 can derive about the contribution to cell 𝑥1,2. The contributor to cell

𝑥2,3 can derive the following upper bound on the contribution to cell 𝑥2,1: 250 −

100 − 0 = 150 (the total for the aggregation minus the attacker’s own
contribution minus lower bounds for the other contributors to cell 𝑥2,3).

Aggregation 𝑥2,1 + 𝑥2,2 + 𝑥2,3 = 250 protects the contribution to 𝑥2,1 better than

aggregation 𝑥2,1 + 𝑥2,2 = 150 that was checked when the hypercubes were

constructed since the contribution of the largest contribution to 𝑥2,2 is no longer

subtracted (cf. the first inequality of the second case of the lemma). Similarly,
𝑥2,1 + 𝑥2,2 + 𝑥2,3 = 250 protects the contribution to 𝑥2,3 better than aggregation

𝑥2,2 + 𝑥2,3 = 150.

Below we will illustrate how the above lemma can be applied to Table 10. In this

illustration we will use the term “restricting an aggregation to a hypercube”. We

will explain this term for a hypercube in a two-dimensional table. Suppose this
hypercube is given by 𝑥𝑖1,𝑗1

, 𝑥𝑖1,𝑗2
, 𝑥𝑖2,𝑗1

 and 𝑥𝑖2,𝑗2
, where 𝑖1 ≠ 𝑖2 and 𝑗1 ≠ 𝑗2. We

assume that besides this hypercube more cells with indices given by a set 𝑈 have

been suppressed, where 𝑈 ∩ {(𝑖1, 𝑗1), (𝑖1, 𝑗2), (𝑖2, 𝑗1), (𝑖2, 𝑗2)} = ∅. The explicit
aggregations involving 𝑥𝑖1,𝑗1

, 𝑥𝑖1,𝑗2
, 𝑥𝑖2,𝑗1

 or 𝑥𝑖2,𝑗2
 are then given by

𝑥𝑖1,𝑗1
+ 𝑥𝑖1,𝑗2

+ ∑ 𝑥𝑖1,𝑗

(𝑖1,𝑗)∈𝑈

𝑥𝑖1,𝑗1
+ 𝑥𝑖2,𝑗1

+ ∑ 𝑥𝑖,𝑗1

(𝑖,𝑗1)∈𝑈

𝑥𝑖2,𝑗1
+ 𝑥𝑖2,𝑗2

+ ∑ 𝑥𝑖2,𝑗

(𝑖2,𝑗)∈𝑈

𝑥𝑖1,𝑗2
+ 𝑥𝑖2,𝑗2

+ ∑ 𝑥𝑖,𝑗2

(𝑖,𝑗2)∈𝑈

Any (explicit or implicit) aggregation (possibly) involving 𝑥𝑖1,𝑗1

, 𝑥𝑖1,𝑗2
, 𝑥𝑖2,𝑗1

 or 𝑥𝑖2,𝑗2

is hence given by

(𝜇1 + 𝜇2)𝑥𝑖1,𝑗1

+ (𝜇1 + 𝜇4)𝑥𝑖1,𝑗2
+ (𝜇2 + 𝜇3)𝑥𝑖2,𝑗1

+ (𝜇3 + 𝜇4)𝑥𝑖2,𝑗2
+

𝜇1 ∑ 𝑥𝑖1,𝑗

(𝑖1,𝑗)∈𝑈

+ 𝜇2 ∑ 𝑥𝑖,𝑗1

(𝑖,𝑗1)∈𝑈

+ 𝜇3 ∑ 𝑥𝑖2,𝑗

(𝑖2,𝑗)∈𝑈

+ 𝜇4 ∑ 𝑥𝑖,𝑗2

(𝑖,𝑗2)∈𝑈

+

terms involving suppressed cells with indices in 𝑈

for some 𝜇1, 𝜇2, 𝜇3 and 𝜇4.
The restriction of such an aggregation restricted to the hypercube given by 𝑥𝑖1,𝑗1

,

𝑥𝑖1,𝑗2
, 𝑥𝑖2,𝑗1

 and 𝑥𝑖2,𝑗2
 is then defined as

(𝜇1 + 𝜇2)𝑥𝑖1,𝑗1

+ (𝜇1 + 𝜇4)𝑥𝑖1,𝑗2
+ (𝜇2 + 𝜇3)𝑥𝑖2,𝑗1

+ (𝜇3 + 𝜇4)𝑥𝑖2,𝑗2

CBS | Discussion Paper | February 2019 21

We can define the restriction to any set of aggregations that was constructed to

protect a certain unsafe cell – instead of a hypercube – in a similar way.

Now, let us consider an aggregation in Table 10 in which an unsafe cell is involved,
say 𝑥1,1 − 𝑥2,2 + 𝑥4,5 = 18, which in fact involves both unsafe cells 𝑥2,2 and 𝑥4,5.

We now restrict this aggregation to the hypercube for the first unsafe cell 𝑥2,2.

This gives the aggregation 𝑥1,1 − 𝑥2,2. During the cell suppression process it was

concluded that this latter aggregation sufficiently protects the largest contribution
to unsafe cell 𝑥2,2. By applying the lemma, we conclude that aggregation 𝑥1,1 −

𝑥2,2 + 𝑥4,5 also sufficiently protects the largest contribution to unsafe cell 𝑥2,2.

Similarly, we restrict 𝑥1,1 − 𝑥2,2 + 𝑥4,5 = 18 to the hypercube for the second

unsafe cell 𝑥4,5. This gives the aggregation 𝑥2,2 + 𝑥4,5. During the cell suppression

process it was concluded that this latter aggregation sufficiently protects unsafe
cell 𝑥4,5. By applying the lemma, we conclude that aggregation 𝑥1,1 − 𝑥2,2 + 𝑥4,5

also sufficiently protects the largest contribution to unsafe cell 𝑥4,5. Since both

unsafe cells involved in the aggregation are sufficiently protected, the aggregation

itself is sufficiently protected.

The same idea, i.e. restricting an aggregation based on several hypercubes to a

single hypercube that was constructed to protect a certain unsafe cell and then

applying the lemma, can be used to show that other tables that are protected by

means of the hypercube method in combination with our LP approach for the

auditing problem are safe too. Namely, restricting an aggregation based on several

hypercubes to a single hypercube that was constructed to protect a certain unsafe

cell leads to an aggregation in that hypercube that protects that unsafe cell. This

holds true more generally: restricting an aggregation based on several hypercubes

to any set of aggregations that was constructed to protect a certain unsafe cell

leads to an aggregation in that any set of aggregations that was constructed to

protect a certain unsafe cell that protects that unsafe cell. The lemma shows that

the larger aggregation based on several hypercubes can only lead to more

protection for the unsafe cell.

The above-described basic idea for constructing hypercubes can (and sometimes

needs) to be extended, because in some cases suppressing a single hypercube may

not suffice to protect a particular unsafe cell and more (hypercubes of) cells need

to be suppressed. Note that the lemma applies to this situation as well. Another

reason for extending the basic idea for constructing hypercubes is that after

several hypercubes have been suppressed, some of the earlier suppressed cells

may not need to be suppressed after all and may be released without disclosing

any unsafe information. Whether earlier suppressed cells may be released after all

can be checked by means of our LP approach for the auditing problem. We have

not implemented such extensions in our prototype software.

CBS | Discussion Paper | February 2019 22

5. Test results

5.1 The auditing problem

Our LP approach for the auditing problem indeed shows that Table 4 (example 1)

and Table 7 (example 2) described earlier are unsafe according to the criterion

proposed by Daalmans and De Waal (2010).

We give another example. Table 12 requires protection against disclosure of

sensitive information.

Table 12. An unprotected table (example 4), in brackets the largest two

contributions to each cell are mentioned

 𝐶1 𝐶2 𝐶3 Total

𝑅1 100 (90;5) 1200

(600;360)

2100

(1050;630)

3400

𝑅2 1000

(500;300)

80

(75;3)

1600

(800;480)

2680

𝑅3 2200

(1100;660)

3100

(1550;930)

4800

(2400;1440)

10100

Total 3300 4380 8500 16180

The parameters of the used protection rule again are 𝑝 = 20, 𝑞 = 100. Cell 𝑅1 ×

𝐶1 is unsafe, whereas the other cells in Table 12 are safe.

According to traditional criterion for the auditing problem described in Section 2.2,

the upper bound on the suppression interval for cell 𝑅1 × 𝐶1 should be at least

113. Namely, when the upper bound on the suppression interval cell 𝑅1 × 𝐶1

equals 113, the second largest contributor to cell 𝑅1 × 𝐶1 can derive that the

upper bound on the largest contribution is 108 (= 113– 5). This upper bound

exceeds the actual value (i.e. 90) of the largest contribution to cell 𝑅1 × 𝐶1by

exactly 20%.

With the requirement that the upper bound on the suppression interval is at least

113, 𝜏-ARGUS gives Table 13 as output, if we measure information loss due to

suppression by the sum of the suppressed cell values.

Table 13. A safe table version according to 𝜏-ARGUS (example 4)

 𝐶1 𝐶2 𝐶3 Total

𝑅1 × × 2100 3400

𝑅2 × × 1600 2680

𝑅3 2200 3100 4800 10100

Total 3300 4380 8500 16180

We check whether the privacy of the largest contributor to 𝑅1 × 𝐶1 is sufficiently

protected against an attack from the largest contributor to cell 𝑅2 × 𝐶2 according

to the alternative criterion by Daalmans and De Waal (2010). The result our LP

approach, and our prototype software, is that Table 13 is unsafe according to that

CBS | Discussion Paper | February 2019 23

criterion. To check the result of our LP approach we introduce the notation in

Table 14.

Table 14. Checking the table protected by 𝝉-ARGUS (example 4)

 𝐶1 𝐶2 𝐶3 Total

𝑅1 𝑥1,1 𝑥1,2 2100 3400

𝑅2 𝑥2,1 𝑥2,2 1600 2680

𝑅3 2200 3100 4800 10100

Total 3300 4380 8500 16180

One of the (implicit) aggregations that can be obtained from this table is 𝑥1,1 −

𝑥2,2 = 20. This aggregation, for instance, follows by subtracting the explicit

aggregation 𝑥1,2 + 𝑥2,2 = 1280 from the explicit aggregation 𝑥1,1 + 𝑥1,2 = 1300.

The largest contributor to cell 𝑅2 × 𝐶2 can hence derive that the upper bound on

the largest contribution to cell 𝑅1 × 𝐶1 is 20 + 75 + 10 − 0 = 105 (the first term

follows from the above implicit aggregation, the second term is his own

contribution to cell 𝑅2 × 𝐶2, the third term is an upper bound on the other

contributions to cell 𝑅2 × 𝐶2, and the fourth term is a lower bound on the other

contributions to cell 𝑅1 × 𝐶1. These latter upper and lower bounds can be

computed using the 𝑞 parameter). That is, Table 13 is indeed unsafe according to

the alternative criterion proposed by Daalmans and De Waal (2010), because

105 ≤ 90 + 20% × 90 = 108.

Similarly, the largest contributor to cell 𝑅2 × 𝐶2 can also derive that the lower

bound on the largest contribution to cell 𝑅1 × 𝐶1 is 20 + 75 + 0 − 20 = 75 (the

first term follows from the implicit aggregation, the second term is his own

contribution to cell 𝑅2 × 𝐶2, the third term is a lower bound on the other

contributions to cell 𝑅2 × 𝐶2, and the fourth term is an upper bound on the other

contributions to cell 𝑅1 × 𝐶1. These latter upper and lower bounds can again be

computed using the 𝑞 parameter). This again confirms that Table 13 is unsafe

according to the criterion by Daalmans and De Waal (2010).

The LP approach and our prototype software construct the implicit aggregation
𝑥1,1 − 𝑥2,2 = 20, and conclude that too much information on the largest

contribution to cell 𝑅1 × 𝐶1 can be disclosed from this aggregation by largest

contributor to cell 𝑅2 × 𝐶2.

5.2 Finding cell suppressions

We have also tested our prototype software for the cell suppression problem. We

were in particular interested to see if our prototype software indeed avoids

selecting the cell suppression patterns that are selected by 𝜏-ARGUS, but that are

unsafe according to the alternative criterion by Daalmans and De Waal (2010).

The objective of our prototype software is to minimize the sum of the suppressed

cell values.

For Table 6 (example 2) our prototype software finds the suppression pattern in

Table 15.

CBS | Discussion Paper | February 2019 24

Table 15. A table protected by our prototype software (example 2)

 𝐶1 𝐶2 𝐶3 Total

𝑅1 × 380 × 880

𝑅2 50 80 60 190

𝑅3 × 800 × 1680

Total 820 1260 670 2740

For Table 12 (example 4) our prototype software finds the suppression pattern in

Table 16.

Table 16. A table protected by our prototype software (example 4)

 𝐶1 𝐶2 𝐶3 Total

𝑅1 × 1200 × 3400

𝑅2 1000 80 1600 2680

𝑅3 × 3100 × 9100

Total 3300 3380 8500 15180

Tables 15 and 16 are indeed safe according to the alternative criterion proposed

by Daalmans and De Waal (2010).

Given that Tales 15 and 16 are safe according to this alternative criterion

proposed, it is easy to verify that Tables 15 and 16 are indeed the protected tables

that lead to the least information loss. Namely, the cell suppression patterns with

at least one secondarily suppressed cell in each row and each column of the

unsafe cell 𝑅1 × 𝐶1 that have the lowest information loss for Tables 6 and 12 are

given in Tables 7 and 13, respectively. However, the cell suppression patterns in

Tables 7 and 13 lead to unsafe tables according to the criterion proposed by

Daalmans and De Waal (2010). Tables 15 and 16 give the suppression patterns

with at least one secondarily suppressed cell in each row and each column of the

unsafe cell 𝑅1 × 𝐶1 that have the second lowest information loss for Tables 6 and

12, respectively. Since Tables 15 and 16 are safe according to the criterion

proposed by Daalmans and De Waal (2010) these tables are therefore the

protected tables with the least information loss.

6. Discussion

In this paper, we have shown that it is feasible to apply the criterion by Daalmans

and De Waal (2010) for the auditing problem in practice. This can be done by

implementing this criterion by means of a series of LP problems rather than by

means of a large mixed-integer programming problem as was originally proposed

by Daalmans and De Waal (2010). In principle, this approach based on using a

series of LP problems can also be used for the development of a cell suppression

method and accompanying software. One way to do this is by combining the LP

problems with the hypercube approach as sketched in Section 4 of the current

paper.

CBS | Discussion Paper | February 2019 25

We have not studied how often the alternative criterion for the auditing problem

by Daalmans and De Waal (2010) leads major differences with the traditional

criterion. The examples where the traditional criterion gives undesirable results

given in this paper were specially constructed for demonstrating the flaws of the

traditional criterion. So, it is quite possible that the differences with the traditional

criterion may be small in practice. From a theoretical point of view, we feel that

the difference between alternative criterion by Daalmans and De Waal (2010) and

the traditional criterion is important as the traditional criterion can lead to

inconsistencies with the applied sensitivity measures. The alternative criterion by

Daalmans and De Waal (2010) avoids this inconsistency. Our contribution in the

current paper is a step towards implementability of this alternative criterion in

practice.

We are aware of the fact that our LP approach is only a step towards

implementability of the alternative criterion. More efficient algorithms for the

auditing problem and, especially, the cell suppression problem are highly desired.

Undoubtedly, such more efficient algorithms can indeed be developed. We leave

the development of such algorithms to specialists in Operations Research.

Related to the development of more efficient algorithms for the auditing and the

cell suppression problems is the development of efficient and user-friendly

software for solving these problems in practice. For this paper we have developed

prototype software demonstrating the feasibility of implementing the alternative

criterion by Daalmans and De Waal (2010) as a series of LP problems. For

producing software that can be used in the day-to-day routine at a statistical

office, a substantial effort would be required.

In this paper we have assumed that holdings do not occur in the data to be

protected. Our approach should preferably be extended in order to take holdings

into account. The basic idea of such an extension is quite straightforward: protect

the largest contributing holding to an aggregation against an attack from the

second largest contributing holding to that aggregation. The translation of this

idea into mathematical machinery may, however, be quite complicated, especially

if one wants to develop efficient software for this situation. We leave the

extension of our approach to holdings as a potential topic for future research.

Even more important seems to be the development of an extension of our

approach to hierarchical tables, where, for instance, cell sum up to subtotals,

which in turn sum up to higher-level totals. Hierarchical tables frequently occur in

practice at NSIs. The hierarchical structure of such tables has to be taken into

account during the cell suppression process. Extending our approach to

hierarchical tables would be an important step towards the use of this (extended)

approach in practice.

Acknowledgement

The authors thank Peter-Paul de Wolf for his useful comments on earlier versions

of this paper, which helped to substantially improve the paper.

CBS | Discussion Paper | February 2019 26

References

Cox, L.H. (1980), Suppression Methodology and Statistical Disclosure Control.

Journal of the American Statistical Association 75, pp. 377-385.

Cox, L.H. (1981), Linear Sensitivity Measures in Statistical Disclosure Control.

Journal of Statistical Planning and Inference 5, pp. 153‐164.

Cox, L.H. (1995), Protecting Confidentiality in Business Surveys. In: Business Survey

Methods (eds. B.G. Cox, D.A. Binder, B.N. Chinnappa, A. Christianson, M.J. Colledge

and P.S. Kott), John Wiley & Sons, Inc., New York, pp. 443‐473.

Cox, L.H. (2001), Disclosure Risk for Tabular Economic Data. In: Confidentiality,

Disclosure and Data Access: Theory and Practical Applications for Statistical

Agencies (eds. P. Doyle, J.I. Lane, J.J.M. Theeuwes and L.V. Zayatz), North‐Holland

Elsevier, Amsterdam, pp. 167‐183.

Daalmans, J. and T. de Waal (2010), An Improved Formulation of the Disclosure

Auditing Problem for Secondary Cell Suppression. Transactions on Data Privacy 3,

pp. 217-251.

Dellaert, N.P. and W.A. Luijten (1999), Statistical Disclosure in General Three‐

Dimensional Tables. Statistics Neerlandica 53, pp. 197‐221.

De Wolf, P.-P., A. Hundepool, S. Giessing, J.-J. Salazar and J. Castro (2014), τ-

ARGUS (version 4.1) – User’s Manual. Statistics Netherland.

Duarte De Carvalho, F., N.P. Dellaert and M. De Sanches Osório (1994), Statistical

Disclosure in Two‐Dimensional Tables: General Tables. Journal of the American

Statistical Association 89, pp. 1547‐1557.

Duncan, G.T., S.E. Fienberg, R. Krishnan, R. Padman and S.R. Roehrig (2001),

Disclosure Limitation Methods and Information Loss for Tabular Data. In:

Confidentiality, Disclosure and Data Access: Theory and Practical Applications for

Statistical Agencies (eds. P. Doyle, J.I. Lane, J.J.M. Theeuwes and L.V. Zayatz),

North‐Holland Elsevier, Amsterdam, pp. 135‐166.

Fischetti, M. and J.J. Salazar‐González (2000), Models and Algorithms for

Optimizing Cell Suppression in Tabular Data with Linear Constraints. Journal of the

American Statistical Association 95, pp. 916‐928.

Giessing, S. (2001), Nonperturbative Disclosure Control Methods for Tabular Data.

In: Confidentiality, Disclosure and Data Access: Theory and Practical Applications

for Statistical Agencies (eds. P. Doyle, J.I. Lane, J.J.M. Theeuwes and L.V. Zayatz),

North‐Holland Elsevier, Amsterdam, pp. 185‐213.

Giessing, S. (2004), Survey on Methods for Tabular Data Protection in ARGUS. In:

Privacy in Statistical Databases (eds. J. Domingo‐Ferrer and V. Torra), Springer‐

Verlag, Berlin, pp. 1‐13.

Giessing, S. and D. Repsilber (2002), Tools and Strategies to Protect Multiple Tables

with the GHQUAR Cell Suppression Engine. In: Inference Control in Statistical

Databases, From Theory to Practice (ed. J. Domingo-Ferrer), Springer Lecture

Notes in Computer Science, Vol. 2316.

Hundepool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing, E.S. Nordholt, K. Spicer

and P.-P. de Wolf (2012), Statistical Disclosure Control. Wiley & Sons, Chichester.

Kelly, J.P., B.L. Golden and A.A. Assad (1992), Cell Suppression: Disclosure

Protection for Sensitive Tabular Data. Networks 22, pp. 397‐417.

CBS | Discussion Paper | February 2019 27

Repsilber, R.D. (1994), Preservation of Confidentiality in Aggregated Data. Paper

presented at the Second International Seminar on Statistical Confidentiality,

Luxembourg.

Repsilber, D. (2002), Sicherung Persönlicher Angaben in Tabellendaten. In:

Statistische Analysen und Studien Nordrhein-Westfalen, Landesamt für

Datenverarbeitung und Statistik NRW, Ausgabe 1/2002 (in German).

Salazar‐González, J.J. (2002), Extending Cell Suppression to Protect Tabular Data

against Several Attackers. In: Inference Control in Statistical Databases, From

Theory to Practice (editor J. Domingo‐Ferrer), Springer, pp. 34 – 58.

Sande, G. (1977), Towards Automated Disclosure Analysis for Establishment Based

Statistics. Report, Statistics Canada.

Sande, G. (1978a), A Theorem Concerning Elementary Aggregations. Report,

Statistics Canada.

Sande, G. (1978b), Confidentiality and Polyhedra – An Analysis of Suppressed

Entries and Cross‐Tabulations. Report, Statistics Canada.

Sande, G. (2000), Blunders by Official Statistical Agencies while Protecting the

Confidentiality of Business Statistics (unpublished paper).

Willenborg, L. and T. de Waal (1996), Statistical Disclosure Control in Practice.

Springer‐Verlag, New York.

Willenborg, L. and T. de Waal (2001), Elements of Statistical Disclosure Control.

Springer‐Verlag, New York.

CBS | Discussion Paper | February 2019 28

Explanation of symbols

Empty cell Figure not applicable

. Figure is unknown, insufficiently reliable or confidential

* Provisional figure

** Revised provisional figure

2017–2018 2017 to 2018 inclusive

2017/2018 Average for 2017 to 2018 inclusive

2017/’18 Crop year, financial year, school year, etc., beginning in 2017 and ending

in 2018

2013/’14–2017/’18 Crop year, financial year, etc., 2015/’16 to 2017/’18 inclusive

Due to rounding, some totals may not correspond to the sum of the separate

figures.

Colophon

Publisher

Centraal Bureau voor de Statistiek

Henri Faasdreef 312, 2492 JP Den Haag

www.cbs.nl

Prepress

Statistics Netherlands, CCN Creation and visualisation

Design

Edenspiekermann

Information

Telephone +31 88 570 70 70, fax +31 70 337 59 94

Via contactform: www.cbsl.nl/information

© Statistics Netherlands, The Hague/Heerlen/Bonaire 2018.

Reproduction is permitted, provided Statistics Netherlands is quoted as the source.

http://www.cbs.nl/

